本站提供 8500 多本免费的 IT 技术电子书在线下载。
  1. 文章总数:8362
  2. 浏览总数:119,856
  3. 评论:0
  4. 分类目录:124 个
  5. 注册用户数:3
  6. 最后更新:2019年10月10日
过往记忆博客公共帐号iteblog_hadoop
欢迎关注微信公共帐号:
iteblog_hadoop

Natural Language Processing and Computational Linguistics

自然语言处理 iteblog 46℃ 0评论

关注 过往记忆大数据 微信公众号,回复 8491 获取本书下载地址。

子标题:A practical guide to text analysis with Python, Gensim, spaCy, and Keras

Natural Language Processing and Computational Linguistics
作者:
Bhargav Srinivasa-Desikan
ISBN-10:
178883853X
出版年份:
2018
页数:
306
语言:
English
文件大小:
7.6 MB
文件格式:
PDF

图书描述

Modern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data.

This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now – with Python, and tools like Gensim and spaCy.

You’ll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You’re then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You’ll learn to tag, parse, and model text using the best tools. You’ll gain hands-on knowledge of the best frameworks to use, and you’ll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning.

This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You’ll discover the rich ecosystem of Python tools you have available to conduct NLP – and enter the interesting world of modern text analysis.

下载地址

关注 过往记忆大数据 微信公众号,回复 8491 获取本书下载地址。

如图书无法下载,请加微信 fangzhen0219 反馈。
喜欢 (0)or分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!