本站提供 8500 多本免费的 IT 技术电子书在线下载。
  1. 文章总数:8391
  2. 浏览总数:801,061
  3. 评论:0
  4. 分类目录:125 个
  5. 注册用户数:31
  6. 最后更新:2019年11月22日
过往记忆博客公共帐号iteblog_hadoop
欢迎关注微信公共帐号:
iteblog_hadoop

Cosmos DB for MongoDB Developers

MongoDB iteblog 117℃ 0评论

关注 过往记忆大数据 微信公众号,回复 7801 获取本书下载地址。

子标题:Migrating to Azure Cosmos DB and Using the MongoDB API

Cosmos DB for MongoDB Developers
作者:
Manish Sharma
ISBN-10:
1484236815
出版年份:
2018
页数:
209
语言:
English
文件大小:
6.8 MB
文件格式:
PDF, ePub

图书描述

Learn Azure Cosmos DB and its MongoDB API with hands-on samples and advanced features such as the multi-homing API, geo-replication, custom indexing, TTL, request units (RU), consistency levels, partitioning, and much more. Each chapter explains Azure Cosmos DB’s features and functionalities by comparing it to MongoDB with coding samples.

Cosmos DB for MongoDB Developers starts with an overview of NoSQL and Azure Cosmos DB and moves on to demonstrate the difference between geo-replication of Azure Cosmos DB compared to MongoDB. Along the way you’ll cover subjects including indexing, partitioning, consistency, and sizing, all of which will help you understand the concepts of read units and how this calculation is derived from an existing MongoDB’s usage.

The next part of the book shows you the process and strategies for migrating to Azure Cosmos DB. You will learn the day-to-day scenarios of using Azure Cosmos DB, its sizing strategies, and optimizing techniques for the MongoDB API. This information will help you when planning to migrate from MongoDB or if you would like to compare MongoDB to the Azure Cosmos DB MongoDB API before considering the switch.

What You Will Learn

  • Migrate to MongoDB and understand its strategies
  • Develop a sample application using MongoDB’s client driver
  • Make use of sizing best practices and performance optimization scenarios
  • Optimize MongoDB’s partition mechanism and indexing
Who This Book Is For

MongoDB developers who wish to learn Azure Cosmos DB. It specifically caters to a technical audience, working on MongoDB.

下载地址

关注 过往记忆大数据 微信公众号,回复 7801 获取本书下载地址。

如图书无法下载,请加微信 fangzhen0219 反馈。
喜欢 (0)or分享 (0)
发表我的评论
取消评论

表情
本博客评论系统带有自动识别垃圾评论功能,请写一些有意义的评论,谢谢!